

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 3767–3769

Convergent synthesis of potent COX-2 inhibitor inotilone

Julia L. Shamshina and Timothy S. Snowden*

The University of Alabama, Department of Chemistry, Box 870336, Tuscaloosa, AL 35487-0336, United States

Received 22 March 2007; accepted 30 March 2007 Available online 4 April 2007

Abstract—The first synthesis of potent COX-2 inhibitor inotilone is reported. The convergent route features a Mukaiyama aldol condensation that generates the target without the use of protecting groups or a separate dehydration step. The approach also highlights a superior regioselective preparation of 1-bromo-2,4-pentanedione involving a bis(silyl enol ether) and NBS. © 2007 Elsevier Ltd. All rights reserved.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are popular treatments for prevalent inflammatory ailments including arthritis and musculoskeletal pain. In recent years, a specific class of NSAIDs, the cyclooxygenase-2 (COX-2) inhibitors, has sparked intense clinical investigation because of their remarkable cancer chemo-preventive activity versus colorectal,^{[1](#page-1-0)} breast,^{[2](#page-2-0)} and several other cancer cell types. 3 COX-2 3 COX-2 inhibitors also elicit potentiation of tumor response to radiation therapy and may ultimately find use as an adjuvant treatment.[4](#page-2-0) Celecoxib, the most prescribed selective COX-2 inhibitor in the United States, has also shown efficacy in the treatment of Lou Gehrig's disease.^{[5](#page-2-0)} Despite the promising, and in some cases singular, medical benefits offered by COX-2 inhibitors, several have indicated increased cardiovascular risk that warrants caution for applications involving chemoprevention. Recent studies suggest that cardiovascular risk may not be a class effect and that the risk is likely dose dependent.^{[6](#page-2-0)} Hence, potent and highly selective COX-2 inhibitors are desired as safer alternatives to the COX inhibitors currently available.

Hertweck and co-workers recently reported several new phenylpropanoid polyketide metabolites from the mushroom Inonotus sp.[7](#page-2-0) An unusual 5-methyl-3(2H) furanone derivative, inotilone (1), showed a COX-2 enzyme assay IC_{50} value of 0.03 μ M (Fig. 1). This potency rivals that of the marketed inhibitors meloxi-cam and nimesulide^{[8](#page-2-0)} and is superior to rofecoxib.^{[9](#page-2-0)} Importantly, inotilone proved a poor inhibitor of

0040-4039/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.03.166

hydroxysteroid dehydrogenase, xanthine oxidase, and displayed an order of magnitude lower IC_{50} value for COX-2 than COX-1. Thus, its potency, selectivity, and low molecular weight make it an attractive target for further investigation.

Our goal was to synthesize inotilone using a convergent approach conducive to analog preparation. Winkler's route to 5-alkyl-3-furanones (3) seemed particularly attractive as we envisioned the comparable furanone portion of inotilone could be readily coupled with 3,4 dihydroxy benzaldehyde under acidic conditions to afford 1 without phenol protection ([Scheme 1](#page-1-0)). 10 10 10 Winkler et al. also showed that the silyl enol ether of 3 could undergo addition with various aldehydes using one of several Lewis acids, thus portending a promising outcome to our planned late stage coupling step.

Although inspired by the protocol highlighted in [Scheme 1,](#page-1-0) the preparation of the 5-methyl-3 $(2H)$ -furanone (8) featured in inotilone necessitated important modifications from those reported to furnish 3. We were initially dissatisfied with published routes to 1-halo-2,4 diones. The chloride could be prepared in one step using acetone lithium enolate and ethyl chloroacetate in only

Figure 1. Potent and selective COX-2 inhibitor inotilone.

^{*} Corresponding author. Tel.: +1 205 348 8550; fax: +1 205 348 9104; e-mail: snowden@bama.ua.edu

Scheme 1. The Winkler et al. approach to $3(2H)$ -furanone 3 and its use in Mukaiyama aldol reactions.¹⁰

poor yield $(40%).¹¹ Meanwhile attempted regioselec$ tive bromination of 2,4-pentanedione using hexabromocyclopentadiene resulted in an assortment of 1- and 3-bromoacetylacetone and polybrominated products that were difficult to separate[.12](#page-2-0) Direct iodination also furnished an unacceptable mixture of sensitive regioiso-meric iodo-2,4-diones.^{[13](#page-2-0)} However, treatment of bis(silyl enol ether) 6^{14} 6^{14} 6^{14} with NBS afforded the desired 1-bromo-2,4-pentanedione 7 in quantitative yield (Scheme 2). The reaction proceeds rapidly and is equally efficient on scales from 1 to 25 g.

Attempted cyclization of 7 using DBU proved problematic, primarily due to the moderate volatility of 8 and the arduous removal of the hydrophilic product from water during work-up. We modified Winkler's protocol by conducting the cyclization with K_2CO_3 in ether. Rapid filtration of the crude reaction mixture through Celite and rotary evaporation of the filtrate at 23° C provided pure 8 without the need for aqueous work-up or purification. The furanone was subsequently treated with LDA and TMSCl to give 9, which may be purified by simple distillation if desired.

The Mukaiyama aldol reaction between trimethylsilyloxyfuran 9 and 3,4-dihydroxy benzaldehyde was realized using 4.0 equiv of BF_3 : Et_2 O in THF at -30 °C. Fewer equivalents led to poor conversion, as did employment of $Ti(OiPr)_4$ or Et_2AlCl as the Lewis acid. The reaction can also be conducted at room temperature with only a modest decrease in yield (60%) while temperatures lower than -30 °C offer no advantage. Elimination of the intermediate β -hydroxyl group occurs in situ or during work-up, as the crude reaction mixture shows no evidence of the hydroxyl functionality by ¹H NMR. It is notable that the (Z) -alkene is the only observed isomer, presumably because of the destabilizing interaction between the furanone carbonyl and the aromatic C_6 hydrogen in the (E) -diastereomer of 1. All characterization data and NOESY correlations of synthetic 1 coincide with those reported by Hertwick.[7](#page-2-0)

Herein we described the first synthesis of potent COX-2 inhibitor inotilone. The natural product was prepared from commercially available materials in six steps and \sim 50% overall yield. The approach is amenable to scale-up, conducive to analog preparation, and features a high yielding new method for 1-bromoacetylacetone (7) preparation. The synthesis and biological activities of numerous inotilone analogs will be reported once completed.

Acknowledgements

The authors thank The University of Alabama for funding and Dr. Ken Belmore for assistance with NOESY spectroscopy.

Supplementary data

Experimental procedures, NMR spectra, and HRMS data are provided for compounds 1 and 7–9. Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2007.03.166](http://dx.doi.org/10.1016/j.tetlet.2007.03.166).

References and notes

1. For select reviews see: (a) Samoha, S.; Arber, N. Oncology 2005, 69, 33–37; (b) Arber, N.; Eagle, C. J.; Spicak, J.; Rasz, I.; Petr, D.; Jan, H.; Zavoral, M.; Lechuga, M. J.; Gerletti, P.; Tang, J.; Rosenstein, R. B.; Macdonald, K.; Bhadra, P.; Fowler, R.; Wittes, J.; Zauber, A. G.; Solomon, S. D.; Levin, B. N. Eng. J. Med. 2006, 355,

Scheme 2. Route to the total synthesis of inotilone.

2371–2373; (c) Sinicrope, F. A. Mol. Carcinogen. 2006, 45, 447–454.

- 2. (a) Bundred, N. J.; Barnes, N. L. P. Brit. J. Cancer 2005, 93, 510–515; (b) Uray, I. P.; Brown, P. H. Expert Opin. Inv. Drug. 2006, 15, 1583–1600.
- 3. For a review see: Chinthalapally, V. R.; Reddy, B. S. Curr. Cancer Drug Tar. 2004, 4, 29–42.
- 4. (a) Choy, H.; Milas, L. J. Natl. Cancer Inst. 2003, 95, 1440–1452; (b) Nakata, E.; Mason, K. A.; Hunter, N.; Husain, A.; Raju, U.; Zhongxing, L.; Kian, K. A.; Luka, M. Int. J. Radiat. Oncol. 2004, 58, 369–375.
- 5. McGeer, E. G.; McGeer, P. L. Biodrugs 2005, 19, 31– 37.
- 6. (a) Jingjing, Z.; Ding, E. L.; Yiqing, S. J. Am. Med. Assoc. 2006, 296, 1619–1632; (b) McGettigan, P.; Henry, D. J. Am. Med. Assoc. 2006, 296, 1633-1644; (c) Grösch, S.; Maier, T. J.; Schiffman, S.; Geisslinger, G. J. Natl. Cancer Inst. 2006, 98, 736–747; (d) Gerardo, E.; Schwarz, E. R. J. Am. Coll. Cardiol. 2007, 49, 1–14.
- 7. Wangun, H. V. K.; Härtl, A.; Kiet, T. T.; Hertweck, C. Org. Biomol. Chem. 2006, 4, 2545–2548.
- 8. Vane, J. R.; Bakhle, Y. S.; Botting, R. M. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120.
- 9. Chan, C.-C.; Boyce, S.; Brideau, C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Ford-Hutchinson, A. W.; Forrest, M. J.; Gauthier, J. Y.; Gordon, R.; Gresser, M.; Guay, J.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, G.; O'Neill, G. P.; Ouellet, M.; Patrick, D.; Percival, M. D.; Perrier, H.; Prasit, P.; Rodger, I. W.; Tagari, P.; Therien, M.; Vickers, P.; Visco, D.; Wang, Z.; Webb, J.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R.; Riendau, D. J. Pharmacol. Exp. Ther. 1999, 290, 551–560.
- 10. Winkler, J. D.; Oh, K.; Asselin, S. M. Org. Lett. 2005, 7, 387–389.
- 11. Cui, J.-N.; Teraoka, R.; Ema, T.; Sakai, T.; Utaka, M. Tetrahedron Lett. 1997, 38, 3021–3024.
- 12. Magen, S.; Oren, J.; Fuchs, B. Tetrahedron Lett. 1984, 25, 3369–3372.
- 13. Kumler, W. D. J. Am. Chem. Soc. 1938, 60, 855–856.
- 14. Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830–846.