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Convergent synthesis of potent COX-2 inhibitor inotilone
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Abstract—The first synthesis of potent COX-2 inhibitor inotilone is reported. The convergent route features a Mukaiyama aldol
condensation that generates the target without the use of protecting groups or a separate dehydration step. The approach also high-
lights a superior regioselective preparation of 1-bromo-2,4-pentanedione involving a bis(silyl enol ether) and NBS.
� 2007 Elsevier Ltd. All rights reserved.
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Nonsteroidal anti-inflammatory drugs (NSAIDs) are
popular treatments for prevalent inflammatory ailments
including arthritis and musculoskeletal pain. In recent
years, a specific class of NSAIDs, the cyclooxygenase-
2 (COX-2) inhibitors, has sparked intense clinical
investigation because of their remarkable cancer chemo-
preventive activity versus colorectal,1 breast,2 and
several other cancer cell types.3 COX-2 inhibitors also
elicit potentiation of tumor response to radiation ther-
apy and may ultimately find use as an adjuvant treat-
ment.4 Celecoxib, the most prescribed selective COX-2
inhibitor in the United States, has also shown efficacy
in the treatment of Lou Gehrig’s disease.5 Despite the
promising, and in some cases singular, medical benefits
offered by COX-2 inhibitors, several have indicated
increased cardiovascular risk that warrants caution for
applications involving chemoprevention. Recent studies
suggest that cardiovascular risk may not be a class effect
and that the risk is likely dose dependent.6 Hence,
potent and highly selective COX-2 inhibitors are desired
as safer alternatives to the COX inhibitors currently
available.

Hertweck and co-workers recently reported several new
phenylpropanoid polyketide metabolites from the
mushroom Inonotus sp.7 An unusual 5-methyl-3(2H)-
furanone derivative, inotilone (1), showed a COX-2
enzyme assay IC50 value of 0.03 lM (Fig. 1). This
potency rivals that of the marketed inhibitors meloxi-
cam and nimesulide8 and is superior to rofecoxib.9

Importantly, inotilone proved a poor inhibitor of
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hydroxysteroid dehydrogenase, xanthine oxidase, and
displayed an order of magnitude lower IC50 value for
COX-2 than COX-1. Thus, its potency, selectivity,
and low molecular weight make it an attractive target
for further investigation.

Our goal was to synthesize inotilone using a convergent
approach conducive to analog preparation. Winkler’s
route to 5-alkyl-3-furanones (3) seemed particularly
attractive as we envisioned the comparable furanone
portion of inotilone could be readily coupled with 3,4-
dihydroxy benzaldehyde under acidic conditions to
afford 1 without phenol protection (Scheme 1).10

Winkler et al. also showed that the silyl enol ether of 3
could undergo addition with various aldehydes using
one of several Lewis acids, thus portending a promising
outcome to our planned late stage coupling step.

Although inspired by the protocol highlighted in
Scheme 1, the preparation of the 5-methyl-3(2H)-fura-
none (8) featured in inotilone necessitated important
modifications from those reported to furnish 3. We were
initially dissatisfied with published routes to 1-halo-2,4-
diones. The chloride could be prepared in one step using
acetone lithium enolate and ethyl chloroacetate in only
OH

1

Figure 1. Potent and selective COX-2 inhibitor inotilone.
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Scheme 1. The Winkler et al. approach to 3(2H)-furanone 3 and its use in Mukaiyama aldol reactions.10
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poor yield (<40%).11 Meanwhile attempted regioselec-
tive bromination of 2,4-pentanedione using hexabromo-
cyclopentadiene resulted in an assortment of 1- and
3-bromoacetylacetone and polybrominated products
that were difficult to separate.12 Direct iodination also
furnished an unacceptable mixture of sensitive regioiso-
meric iodo-2,4-diones.13 However, treatment of bis(silyl
enol ether) 614 with NBS afforded the desired 1-bromo-
2,4-pentanedione 7 in quantitative yield (Scheme 2). The
reaction proceeds rapidly and is equally efficient on
scales from 1 to 25 g.

Attempted cyclization of 7 using DBU proved problem-
atic, primarily due to the moderate volatility of 8 and
the arduous removal of the hydrophilic product from
water during work-up. We modified Winkler’s protocol
by conducting the cyclization with K2CO3 in ether.
Rapid filtration of the crude reaction mixture through
Celite and rotary evaporation of the filtrate at 23 �C
provided pure 8 without the need for aqueous work-up
or purification. The furanone was subsequently treated
with LDA and TMSCl to give 9, which may be purified
by simple distillation if desired.

The Mukaiyama aldol reaction between trimethyl-
silyloxyfuran 9 and 3,4-dihydroxy benzaldehyde was
realized using 4.0 equiv of BF3ÆEt2O in THF at
�30 �C. Fewer equivalents led to poor conversion, as
did employment of Ti(OiPr)4 or Et2AlCl as the Lewis
acid. The reaction can also be conducted at room tem-
perature with only a modest decrease in yield (60%)
while temperatures lower than �30 �C offer no advan-
tage. Elimination of the intermediate b-hydroxyl group
occurs in situ or during work-up, as the crude reaction
mixture shows no evidence of the hydroxyl functionality
by 1H NMR. It is notable that the (Z)-alkene is the only
observed isomer, presumably because of the destabiliz-
ing interaction between the furanone carbonyl and the
O O
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Scheme 2. Route to the total synthesis of inotilone.
aromatic C6 hydrogen in the (E)-diastereomer of 1. All
characterization data and NOESY correlations of syn-
thetic 1 coincide with those reported by Hertwick.7

Herein we described the first synthesis of potent COX-2
inhibitor inotilone. The natural product was prepared
from commercially available materials in six steps and
�50% overall yield. The approach is amenable to
scale-up, conducive to analog preparation, and features
a high yielding new method for 1-bromoacetylacetone
(7) preparation. The synthesis and biological activities
of numerous inotilone analogs will be reported once
completed.
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